Effects of Different Inoculation Regimes of Torulaspora delbrueckii and Oenococcus oeni on Fermentation Kinetics and Chemical Constituents of Durian Wine

Y. Lu, J.-Y. Chua, M.K.W. Voon, D. Huang, P.-R. Lee, S.-Q. Liu


This work evaluated the effects of inoculation time of Oenococcus oeni on the kinetics of fermentation and chemical constituents of durian wine produced using a non-Saccharomyces yeast, Torulaspora delbrueckii.  The growth of T. delbrueckii in mixed-culture fermentations was significantly adversely affected by the presence of O. oeni, and the growth of malolactic bacteria was also affected by the metabolism of yeast during fermentation. The level of ethanol produced in simultaneous alcoholic and malolactic fermentation (SIM, 6.93%, v/v) was comparable to that in the Saccharomyces cerevisiae EC-1118 control (6.75%, v/v); both levels were relatively higher than that in the T. delbrueckii Biodiva control (6.39%, v/v) and the other two sequential fermentations (oenococci inoculated after four and seven days of alcoholic fermentation, SEQ 4th, 6.34% and SEQ 7th, 6.33% v/v respectively). The final concentrations of organic acids and esters in the mixed-culture wines were correlated with the inoculation time of O. oeni. SIM produced relatively higher levels of ethyl esters (ethyl esters of hexanoate, octanoate, decanoate and lactate) and acetate esters (ethyl acetate and isoamyl acetate) than those in SEQ 4th, SEQ 7th and the Biodiva control. This suggests that SIM would contribute fruity aroma properties to and modulate the mouthfeel of durian wine. The production of 3-(ethylthio)-1-propanol could compensate for the weak onion-like odour caused by the decrease in initial volatile sulphur compounds. Overall, this research suggests that SIM treatment is an effective way to produce durian wine with higher ester production.


Durian wine; Torulaspora delbrueckii; Oenococcus oeni; Malolactic fermentation; Inoculation time

Full Text:



Abrahamse, C.E., & Bartowsky, E.J., 2012. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: influence on chemical composition. World J. Microbiol. Biotechnol. 28, 255-265.

Agarwal, S., Basu, S., Vora, V., Mason, J., & Pirt, S., 1987. Studies on the production of L-acetyl phenyl carbinol by yeast employing benzaldehyde as precursor. Biotechnol. Bioeng. 29, 783-785.

Alexandre, H., Costello, P.J., Remize, F., Guzzo, J., & Guilloux-Benatier, M., 2004. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int. J. Food Microbiol. 93, 141-154.

Bartowsky, E.J., & Henschke, P.A., 2004. The buttery attribute of wine-diacetyl-desirability, spoilage and beyond. Int. J. Food Microbiol. 96, 235-252.

Byarugaba-Bazirake, G. W., van Rensburg, P., & Kyamuhangire, W., 2013. The influence of commercial enzymes on wine clarification and on the sensory characteristics of wines made from three banana cultivars. Am. J. Biotechnol. Mol. Sci. 3, 41-62.

Chen, D., & Liu, S.Q., 2016. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations. Food Chem. 196, 988-995.

de Revel, G., Martin, N., Pripis-Nicolau, L., Lonvaud-Funel, A., & Bertrand, A., 1999. Contribution to the knowledge of malolactic fermentation influence on wine aroma. J. Agric. Food Chem. 47, 4003-4008.

Delfini, C., Gaia, P., Bardi, L., Mariscalco, G., Contiero, M., & Pagliara, A., 2015. Production of benzaldehyde, benzyl alcohol and benzoic acid by yeasts and Botrytis cinerea isolated from grape musts and wines. Vitis-J. Grapevine Res. 30, 253.

Francis, I., & Newton, J., 2005. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 11, 114-126.

Gómez-Plaza, E., & Cano-López, M., 2011. A review on micro-oxygenation of red wines: claims, benefits and the underlying chemistry. Food Chem. 125, 1131-1140.

Graves, T., Narendranath, N.V., Dawson, K., & Power, R., 2007. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Appl. Microbiol. Biotechnol. 73, 1190-1196.

Guth, H., 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 45, 3027-3032.

Haruenkit, R., Poovarodom, S., Vearasilp, S., Namiesnik, J., Sliwka-Kaszynska, M., Park, Y. S., Heo, B. G., Cho, J. Y., Jang, H.G., & Gorinstein, S., 2010. Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chem. 118, 540-547.

Herrero, M., García, L.A., & Díaz, M., 2003. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation. J. Ind. Microbiol. Biotechnol. 30, 699-704.

Ho, L.H., & Bhat, R. (2015). Exploring the potential nutraceutical values of durian (Durio zibethinus L.) - An exotic tropical fruit. Food Chem. 168, 80-89.

Izquierdo, P.M., Pérez-Martín, F., Romero, E.G., Prieto, S.S., & Herreros, M.d.l.L.P., 2012. Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of Tempranillo and Merlot wines. Int. J. Food Microbiol. 156, 245-254.

Izquierdo, P.M., García-Romero, E., Manso, J.M.H., & Fernández-González, M., 2014. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. Eur. Food Res. Technol. 239, 279-286.

Jackowetz, J., & Mira de Orduña, R., 2012. Metabolism of SO2 binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine. Int. J. Food Microbiol. 155, 153-157.

Jeromel, A., Herjavec, S., Orlić, S., Redžepović, S., & Wondra, M., 2008. Changes in volatile composition of Kraljevina wines by controlled malolactic fermentation. J. Central Euro. Agric. 9, 363-372.

Jussier, D., Morneau, A.D., & Mira de Orduña, R., 2006. Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl. Environ. Microbiol. 72, 221-227.

King, S., & Beelman, R., 1986. Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model grape juice/wine system. Am. J. Enol. Viticult. 37, 53-60.

Knoll, C., Fritsch, S., Schnell, S., Grossmann, M., Rauhut, D., & du Toit, M., 2011. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT - Food Sci. Technol. 44, 2077-2086.

Landaud, S., Helinck, S., & Bonnarme, P., 2008. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl. Microbiol. Biotechnol. 77, 1191-1205.

Lee, P.R., Ong, Y.L., Yu, B., Curran, P., & Liu, S.Q., 2010. Evolution of volatile compounds in papaya wine fermented with three Williopsis saturnus yeasts. Int. J. Food Sci. Technol. 45, 2032-2041.

Lee, P.R., Saputra, A., Yu, B., Curran, P., & Liu, S.Q., 2012. Biotransformation of durian pulp by mono- and mixed-cultures of Saccharomyces cerevisiae and Williopsis saturnus. LWT - Food Sci. Technol. 46, 84-90.

Liu, S.Q., 2003. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 83(2), 115-131.

Lu, Y., Huang, D., Lee, P.R., & Liu, S.Q., 2015. Effects of cofermentation and sequential inoculation of Saccharomyces bayanus and Torulaspora delbruckii on durian wine composition. Int. J. Food Sci. Technol. 50, 2653-2663.

Lu, Y., Huang, D., Lee, P.R., & Liu, S.Q., 2016a. Assessment of volatile and non-volatile compounds in durian wines fermented with four commercial non-Saccharomyces yeasts. J. Sci. Food Agric. 96, 1511-1521.

Lu, Y., Chua, J.Y., Huang, D., Lee, P.R., & Liu, S.Q., 2016b. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Appl. Microbiol. Biotechnol. 100, 8877-8888.

Lu, Y., Chua, J.Y., Huang, D., Lee, P.R., & Liu, S.Q., 2017. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Food Chem. 215, 209-218.

Maicas, S., Ferrer, S., & Pardo, I., 2002. NAD (P) H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiol. 148, 325-332.

Massera, A., Soria, A., Catania, C., Krieger, S., & Combina, M., 2009. Simultaneous inoculation of Malbec (Vitis vinifera) musts with yeast and bacteria: effects on fermentation performance, sensory and sanitary attributes of wines. Food Technol. Biotechnol. 47, 192-201.

Mendoza, L.M., Merín, M.G., Morata, V.I., & Farías, M.E., 2011. Characterization of wines produced by mixed culture of autochthonous yeasts and Oenococcus oeni from the northwest region of Argentina. J. Ind. Microbiol. Biotechnol. 38, 1777-1785.

Moreira, N., De Pinho, P.G., Santos, C., & Vasconcelos, I., 2011. Relationship between nitrogen content in grapes and volatiles, namely heavy sulfur compounds, in wines. Food Chem. 126, 1599-1607.

Nehme, N., Mathieu, F., & Taillandier, P., 2010. Impact of the co-culture of Saccharomyces cerevisiae-Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiol. 27, 150-157.

Nikolantonaki, M., Chichuc, I., Teissedre, P.L., & Darriet, P., 2010. Reactivity of volatile thiols with polyphenols in a wine-model medium: Impact of oxygen, iron, and sulfur dioxide. Anal. Chim. Acta. 660, 102-109.

Noguerol-Pato, R., González-Rodríguez, R., González-Barreiro, C., Cancho-Grande, B., & Simal-Gándara, J., 2011. Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem. 124, 1525-1532.

Pozo-Bayon, M.A., Alegria, G.E., Polo, M.C., Tenorio, C., Martin-Alvarez, P.J., de la Banda, M.T.C., Ruiz-Larrea, F., & Moreno-Arribas, M.V., 2005. Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem. 53, 8729-8735.

Rosi, I., & Canuti, V., 2003. Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni. Aust. J. Grape Wine Res. 9, 194-199.

Sumby, K.M., Grbin, P.R., & Jiranek, V., 2010. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 121, 1-16.

Sun, S.Y., Che, C.Y., Sun, T.F., Lv, Z.Z., He, S.X., Gu, H.N., Shen, W.J., Chi, D.C., & Gao, Y., 2013. Evaluation of sequential inoculation of Saccharomyces cerevisiae and Oenococcus oeni strains on the chemical and aromatic profiles of cherry wines. Food Chem. 138, 2233-2241.

Swiegers, J.H., Bartowsky, E.J., Henschke, P.A., & Pretorius, I.S., 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11, 139-173.

Taniasuri, F., Lee, P.R., & Liu, S.Q., 2016. Induction of simultaneous and sequential malolactic fermentation in durian wine. Int. J. Food Microbiol. 230, 1-9.

Ugliano, M., & Moio, L., 2005. Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 53, 10134-10139.

Vallet, A., Lucas, P., Lonvaud-Funel, A., & de Revel, G., 2008. Pathways that produce volatile sulfur compounds from methionine in Oenococcus oeni. J. Appl. Microbiol. 104, 1833-1840.

Viana, F., Gil, J.V., Genovés, S., Vallés, S., & Manzanares, P., 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 25, 778-785.

Wang, D., Wang, L., Hou, L., Deng, X., Gao, Q., & Gao, N., 2015. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid. Ann. Microbiol. 65, 2323-2331.

Zhang, C., & Gänzle, M., 2010. Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. J. Appl. Microbiol. 109, 1301-1310.

DOI: http://dx.doi.org/10.21548/38-2-2330


  • There are currently no refbacks.