Microbial Resources and Innovation in the Wine Production Sector

C. Berbegal, G. Spano, M. Tristezza, F. Grieco, V. Capozzi


Microbial starter cultures represent a fundamental level of innovation in the wine sector. Selected yeast strains are routinely used to achieve the needed biomass preparation to accelerate and steer alcoholic fermentation in grape must. The use of starter cultures to induce malolactic fermentation in wine relies on the characterisation and propagation of suitable strains of lactic acid bacteria. Furthermore, the selection of new strains, the renewal of management of microbial resources and new technologies allow continuous
improvements in oenology, which may increase the beneficial aspects of wine. In this review, with the aim to stimulate microbial-driven, consumer-oriented advances in the oenological sector, we propose an overview of recent trends in this field that are reported by following the classical separation into ‘product innovation’ and ‘process innovation’. Hence, we shall highlight i) the possible positive innovative impacts of microbial
resources on the safety and the sensorial and functional properties of wine (product innovation) and ii) the potential microbial-based improvements allowing the reduction of time/costs and the environmental impacts associated with winemaking (process innovation).

Full Text:



Abrunhosa, L., Inês, A., Rodrigues, A.I., Guimarães, A., Pereira, V.L., Parpot, P., Mendes-Faia, A. & Venâncio, A., 2014. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. International Journal of Food Microbiology. 188,45-52.

Agouridis, N., Kopsahelis, N., Plessas, S., Koutinas, A.A. & Kanellaki, M., 2008. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine. Bioresource Technology. 99,9017–9020.

Alexandre, H., Costello, P.J., Remize, F., Guzzo, J. & Guilloux-Benatier, M., 2004. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. International Journal of Food Microbiology. 93,141-154.

Alonso, J.L., Garrote, G., Domínguez, H., Santos, V., Parajó, J.C., 2009. Lactic acid from apple pomace. A laboratory experiment for teaching valorisation of wastes. CyTA – J. Food 7 (2), 83–88.

Alonso, A., Belda, I., Santos, A., Navascués, E. & Marquina, D., 2015. Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control. 51,129-134.

Arvanitoyannis IS, Ladas D,Mavromatis A (2006a). Potential uses and applications of treated wine waste: a review. Int J Food Sci Tech 41:475–487

Arvanitoyannis, I.S., Ladas, D. & Mavromatis, A., (2006b). Wine waste treatment methodology. International Journal of Food and Science Technology 41:1117–1151

Azzolini, M., Tosi, E., Lorenzini, M., Finato, F. & Zapparoli, G., 2015. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology. 31,277-293.

Bai, Z., Jin, B., Li, Y., Chen, J. & Li, Z., 2008. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. Journal of Environmental Sciences. 20,353-358.

Baiano, A., Terracone, C., Gambacorta, G. & La Notte, E., 2009. Phenolic Content and Antioxidant Activity of Primitivo Wine: Comparison among Winemaking Technologies. Journal of Food Science. 74,C258-C267.

Balboa-Lagunero, T., Arroyo, T., Cabellos, J.M. & Aznar, M., 2013. Yeast selection as a tool for reducing key oxidation notes in organic wines. Food Research International. 53,252-259.

Bartowsky, E. & Borneman, A., 2011. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Applied Microbiology and Biotechnology. 92,441-447.

Bartowsky, E.J., 2005. Oenococcus oeni and malolactic fermentation – moving into the molecular arena. Australian Journal of Grape and Wine Research. 11,174-187.

Bartowsky, E.J., 2009. Bacterial spoilage of wine and approaches to minimize it. Letters of Applied Microbiology. 48,149-156.

Bartowsky, E.J., 2009. Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology. 48,149-156.

Belda, I., Conchillo, L.B., Ruiz, J., Navascués, E., Marquina, D. & Santos, A., 2016. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. International Journal of Food Microbiology. 223,1-8.

Benavent-Gil, Y., Berbegal, C., Lucio, O., Pardo, I. & Ferrer, S., 2016. A new fear in wine: Isolation of Staphylococcus epidermidis histamine producer. Food Control. 62,142-149.

Beneduce, L., Romano, A., Capozzi, V., Lucas, P., Barnavon, L., Bach, B., Vuchot, P., Grieco, F. & Spano, G., 2010. Biogenic amine in wines. Annals of Microbiology. 60,573-578.

Berbegal, C., Peña, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano, G. & Capozzi, V., 2016. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiology. 57,187-194.

Betteridge, A., Grbin, P. & Jiranek, V., 2015. Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation. Trends in Biotechnology. 33,547-553.

Bleve, G., Tufariello, M., Vetrano, C., Mita G. & Grieco F., 2016. Simultaneous Alcoholic and Malolactic Fermentations by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-immobilized in Alginate Beads. Front Microbiol. 2016 Jun 14;7:943. doi: 10.3389/fmicb.2016.00943.

Bordas, M., Isabel Araque, Joan O. Alegret, Mariette El Khoury, Patrick Lucas, Nicolas Rozès, Cristina Reguant & Bordons, A., 2013. Isolation, selection, and characterization of highly ethanol-tolerant strains of Oenococcus oeni from south Catalonia. International Microbiology. 16,113-123.

Brandolini, V., Fiore, C., Maietti, A., Tedeschi, P. & Romano, P., 2007. Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photochemiluminescence. World Journal of Microbiology and Biotechnology. 23,581-586.

Bravo-Ferrada, B.M., Hollmann, A., Delfederico, L., Valdés La Hens, D., Caballero, A. & Semorile, L., 2013. Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World Journal of Microbiology and Biotechnology.1-13.

Bustos, G., Moldes, A.B., Cruz, J.M. & Domínguez, J.M., 2004. Evaluation of Vinification Lees as a General Medium for Lactobacillus Strains. Journal of Agricultural and Food Chemistry. 52,5233-5239.

Callejón, S., Sendra, R., Ferrer, S. & Pardo, I., 2014. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Applied Microbiology and Biotechnology. 98,185-198.

Callejón, S., Sendra, R., Ferrer, S. & Pardo, I., 2016. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Applied Microbiology and Biotechnology. 100,3113-3124.

Campbell-Sills, H., El Khoury, M., Favier, M., Romano, A., Biasioli, F., Spano, G., Sherman, D.J., Bouchez, O., Coton, E., Coton, M., Okada, S., Tanaka, N., Dols-Lafargue, M. & Lucas, PM. 2015. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines. Genome Biology and Evolution. 7, 1506-18.

Cantos, E., Espín, J.C. & Tomás-Barberán, F.A., 2002. Varietal Differences among the Polyphenol Profiles of Seven Table Grape Cultivars Studied by LC−DAD−MS−MS. Journal of Agricultural and Food Chemistry. 50,5691-5696.

Capozzi, V., Di Toro, M.R., Grieco, F., Michelotti, V., Salma, M., Lamontanara, A., Russo, P., Orrù, L., Alexandre, H. & Spano, G., 2016. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiology. 59,196-204.

Capozzi, V., Garofalo, C., Chiriatti, M.A., Grieco, F. & Spano, G., 2015. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiological Research. 181,75-83.

Capozzi, V., Ladero, V., Beneduce, L., Fernádez, M., Alvarez, M.A., Benoit, B., Laurent, B., Grieco, F. & Spano, G., 2010. Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiology. 28,434-439.

Capozzi, V., Russo, P., Beneduce, L., Weidmann, S., Grieco, F., Guzzo, J. & Spano, G., 2010. Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Letters in Applied Microbiology. 50,327-334.

Capozzi, V., Russo, P., Ladero, V., Fernández, M., Fiocco, D., Alvarez, M.A., Grieco, F. & Spano, G., 2012. Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Frontiers in Microbiology. 3,122.

Capozzi, V., Russo, P., Lamontanara, A., Orrù, L., Cattivelli, L. & Spano, G., 2014. Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. Genome Announcements. 2,e01077-01014.

Capozzi, V. & Spano, G., 2011. Food Microbial Biodiversity and “Microbes of Protected Origin”. Frontiers in Microbiology. 2,237.

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E. & Hermosín-Gutiérrez, I., 2007. Flavonol Profiles of Vitis vinifera Red Grapes and Their Single-Cultivar Wines. Journal of Agricultural and Food Chemistry. 55,992-1002.

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E. & Hermosín-Gutiérrez, I., 2010. Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis. 23,699-705.

Ciani, M. & Comitini, F., 2015. Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science. 1,1-6.

Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P., 2009. Controlled mixed culture fermentation: a new perspective on the use of non Saccharomyces yeasts in winemaking. FEMS Yeast Research. 10,123-133.

Cocolin, L., Heisey, A. & Mills, D.A., 2001. Direct identification of the indigenous yeasts in commercial wine fermentations. American Journal of Enology & Viticulture. 52,49-53.

Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I. & Ciani, M., 2011. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology. 28,873-882.

Costantini, A., Cersosimo, M., Del Prete, V. & Garcia-Moruno, E., 2006. Production of biogenic amines by lactic acid bacteria: screening by PCR, thin-layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must. Journal of Food Protection. 69,391-396.

Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud-Funel, A., Lucas, P. & Coton, E., 2010. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiology. 27,1078-1085.

Cvejić, J. & Atanacković, M. (2015) Chapter 60 - Effect of Wine Production Techniques on Wine Resveratrol and Total Phenolics A2 - Preedy, Victor. Processing and Impact on Active Components in Food. San Diego, Academic Press: 501-508

Chatonnet, P., Dubourdieu, D. & Boidron, J.N., 1995. The Influence of Brettanomyces/Dekkera sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am J Enol Vitic. 46,463-468.

Cholet, C., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L’Hyvernay, A., Ghidossi, R., Vorobiev, E., Mietton-Peuchot, M. & Gény, L., 2014. Structural and Biochemical Changes Induced by Pulsed Electric Field Treatments on Cabernet Sauvignon Grape Berry Skins: Impact on Cell Wall Total Tannins and Polysaccharides. Journal of Agricultural and Food Chemistry. 62,2925-2934.

Davis, C.R., Wibowo, D., Fleet, G.H. & Lee, T.H., 1988. Properties of Wine Lactic Acid Bacteria: Their Potential Enological Significance. American Journal of Enology and Viticulture. 39,137-142.

De Bellis, P., Tristezza, M., Haidukowski, M., Fanelli, F., Sisto, A., Mulè, G. & Grieco, F., 2015. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils. Toxins. 7,5079-5093.

De Benedictis, M., Bleve, G., Grieco, F., Tristezza, M., Tufariello, M. & Grieco F., 2011 An optimized procedure for the enological selection of non-Saccharomyces starter cultures. Antonie Van Leeuwenhoek. 99(2):189-200.

del Barrio-Galán, R., Cáceres-Mella, A., Medel-Marabolí, M., Peña-Neira Á., 2015. Effect of selected Saccharomyces cerevisiae yeast strains and different aging techniques on the polysaccharide and polyphenolic composition and sensorial characteristics of Cabernet Sauvignon red wines Journal of the Science of Food and Agriculture 95:2132-2144.

Devesa-Rey, R., Vecino, X., Varela-Alende, J.L., Barral, M.T., Cruz, J.M. & Moldes, A.B., 2011. Valorization of winery waste vs. the costs of not recycling. Waste Management. 31,2327-2335.

Di Toro, M.R., Capozzi, V., Beneduce, L., Alexandre, H., Tristezza, M., Durante, M., Tufariello, M., Grieco, F. & Spano, G., 2015. Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. LWT - Food Science and Technology. 60,102-108.

Dias, L., Dias, S., Sancho, T., Stender, H., Querol, A., Malfeito-Ferreira, M. & Loureiro, V., 2003. Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiology. 20,567-574.

Díaz, A.B., Bolívar, J., de Ong, I., Caro, I. & Blandino, A., 2011. Applicability of enzymatic extracts obtained by solid state fermentation on grape marc and orange peels mixtures in must clarification. LWT – Food Science and Technology. 44 (4), 840–846.

Donsì, F., Ferrari, G., Fruilo, M. & Pataro, G., 2010. Pulsed Electric Field-Assisted Vinification of Aglianico and Piedirosso Grapes. Journal of Agricultural and Food Chemistry. 58,11606-11615.

du Toit, M., Engelbrecht, L., Lerm, E. & Krieger-Weber, S., 2011. Lactobacillus: the Next Generation of Malolactic Fermentation Starter Cultures—an Overview. Food and Bioprocess Technology. 4,876-906.

Ferrer, S., Pardo, I., Berbegal, C., Lucio, O. & Polo, L.,2015. Virutas de madera con microorganismos, su preparación y su uso. OEPM. U. d. València. Spain. Patent 101410: 32

Fleet, G.H. (1993) Wine: Microbiology and Biotechnology, Harwood Academic Press.

Fleet, G.H., 2008. Wine yeasts for the future. FEMS Yeast Research. 8,979-995.

Francesca, N., Gaglio, R., Alfonzo, A., Settanni, L., Corona, O., Mazzei, P., Romano, R., Piccolo, A. & Moschetti, G., 2016. The Wine: Typicality or Mere Diversity? The Effect of Spontaneous Fermentations and Biotic Factors on the Characteristics of Wine. Agriculture and Agricultural Science Procedia. 8,769-773.

Francesca, N., Romano, R., Sannino, C., Le Grottaglie, L., Settanni, L. & Moschetti, G., 2014. Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. International Journal of Food Microbiology. 171,84-93.

Gambacorta, L., Pinton, P., Avantaggiato, G., Oswald, I.P. & Solfrizzo, M., 2016. Grape Pomace, an Agricultural Byproduct Reducing Mycotoxin Absorption: In Vivo Assessment in Pig Using Urinary Biomarkers. Journal of Agricultural and Food Chemistry. 64,6762-6771.

Garcia-Alonso, M., Minihane, A.-M., Rimbach, G., Rivas-Gonzalo, J.C. & de Pascual-Teresa, S., 2009. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. The Journal of Nutritional Biochemistry. 20,521-529.

García-Martínez, T., Moreno, J., Mauricio, J.C. & Peinado, R., 2015. Natural sweet wine production by repeated use of yeast cells immobilized on Penicillium chrysogenum. LWT - Food Science and Technology. 61,503-509.

García-Moruno, E. & Muñoz, R., 2012. Does Oenococcus oeni produce histamine? International Journal of Food Microbiology. 157,121-129.

García-Ruiz, A., González-Rompinelli, E.M., Bartolomé, B. & Moreno-Arribas, M.V., 2011. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. International Journal of Food Microbiology. 148,115-120.

Garofalo, C., El Khoury, M., Lucas, P., Bely, M., Russo, P., Spano, G. & Capozzi, V., 2015. Autochthonous starter cultures and indigenous grape variety for regional wine production. Journal of Applied Microbiology. 118,1395-1408.

Garofalo, C., Tristezza, M., Grieco, F., Spano, G. & Capozzi, V., 2016. From grape berries to wine: population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World Journal of Microbiology and Biotechnology. 32,59.

Gilbert, J.A., van der Lelie, D. & Zarraonaindia, I., 2014. Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences of the United States of America. 111,5-6.

Giovinazzo, G. & Grieco, F., 2015. Functional Properties of Grape and Wine Polyphenols. Plant Foods for Human Nutrition. 70,454-462.

González-Arenzana, L., Santamaría, P., López, R. & López-Alfaro, I., 2013. Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja (Spain). Food Research International. 50,438-445.

Grieco F., Tristezza M., Vetrano C., Bleve G., Panico E., Grieco F., Mita G., Logrieco A. (2011). Exploitation of autochthonous micro-organism potential to enhance the quality of Apulian wine. Annals of Microbiology 61, 67-73.

Grimaldi, A., Bartowsky, E. & Jiranek, V., 2005. Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology. Journal of Applied Microbiology. 99,1061-1069.

Guerrero, R.F. & Cantos-Villar, E., 2015. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Science & Technology. 42,27-43.

Guzzon, R., Widmann, G., Settanni, L., Malacarne, M., Francesca, N. & Larcher, R., 2011. Evolution of Yeast Populations during Different Biodynamic Winemaking Processes. South African Journal of Enology and Viticulture. 32,242-250.

Hivrale, A. U., Pawar, P. K., Rane, N. R., & Govindwar, S. P., 2015. Application of Genomics and Proteomics in Bioremediation. Toxicity and Waste Management Using Bioremediation, (Rathoure A.K., Dhatwalia V.K., Eds.), IGI Global, Hershey, USA p. 97-112.

Hong, Y.-A. & Park, H.-D., 2013. Role of non-Saccharomyces yeasts in Korean wines produced from Campbell Early grapes: Potential use of Hanseniaspora uvarum as a starter culture. Food Microbiology. 34,207-214.

Iorizzo, M., Testa, B., Lombardi, S.J., García-Ruiz, A., Muñoz-González, C., Bartolomé, B. & Moreno-Arribas, M.V., 2016. Selection and technological potential of Lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release. LWT - Food Science and Technology. 73,557-566.

Izquierdo-Cañas, P.M., Pérez-Martín, F., Romero, E.G., Prieto, S.S. & Herreros, M.d.l.L.P., 2012. Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of Tempranillo and Merlot wines. International Journal of Food Microbiology. 156,245-254.

Jin, B. & Kelly, J.M., 2009. Wine industry residues. In: Biotechnology for agro-industrial residues utilisation. (Poonam S.-N. N., Ashok P., Eds.) Springer, Dordrecht, Netherlands, p. 293-311.

Jolly, N.P., Varela, C. & Pretorius, I.S., 2014. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research. 14,215-237.

Kemp, B., Alexandre, H., Robillard, B. & Marchal, R., 2015. Effect of Production Phase on Bottle-Fermented Sparkling Wine Quality. Journal of Agricultural and Food Chemistry. 63,19-38.

Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R. & Koutinas, A.A., 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology. 21,377-397.

Kourkoutas, Y., Kanellaki, M. & Koutinas, A.A., 2006. Apple pieces as immobilization support of various microorganisms. LWT - Food Science and Technology. 39,980-986.

Kundu, J.K. & Surh, Y.-J., 2008. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Letters. 269,243-261.

Kunkee, R.E., 1991. Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiology Reviews. 88,55-72.

Lamontanara, A., Orrù, L., Cattivelli, L., Russo, P., Spano, G. & Capozzi V., 2014. Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine. Genome Announcements. 2, e00658- e00614.

Lamontanara, A., Caggianiello, G., Orrù, L., Capozzi, V., Michelotti, V., Bayjanov, J.R., Renckens, B., van Hijum, S.A., Cattivelli, L. & Spano, G. 2015. Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine. Genome Announcements. 3, e00097- e00015.

Landete, J.M., Ferrer, S. & Pardo, I., 2005. Which lactic acid bacteria are responsible of histamine production in wine? Journal of Applied Microbiology. 99,580-586.

Landete, J.M., Ferrer, S. & Pardo, I., 2007. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control. 18,1569-1574.

Landete, J.M., Ferrer, S., Polo, L. & Pardo, I., 2005. Biogenic amines in wines from three Spanish regions. Journal of Agricultural and Food Chemistry. 53,1119-1124.

Landete, J.M., Pardo, I. & Ferrer, S., 2006. Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiology Letters. 260,84-90.

Lerm, E., Engelbrecht, L. & Toit, M.d., 2011. Selection and Characterisation of Oenococcus oeni and Lactobacillus plantarum South African Wine Isolates for Use as Malolactic Fermentation Starter Cultures. South African Journal of Enology and Viticulture. 32,280-295.

Liang, Z., Cheng, L., Zhong, G.-Y. & Liu, R.H., 2014. Antioxidant and Antiproliferative Activities of Twenty-Four Vitis vinifera Grapes. PLoS One. 9,e105146.

Liu, S.-Q., 2002. Malolactic fermentation in wine - beyond deacidification. Journal of Applied Microbiology. 92,589-601.

Liu, J., Warg, Q., Ma, H., Warg, S., 2010. Effect of pretreatment methods on L-lactic acid production from vinasse fermentation. Adv. Mater. Res. 113–116, 1302–1305.

Lonvaud-Funel, A., 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek. 76,317-331.

Lucio, O., Pardo, I., Krieger-Weber, S., Heras, J.M. & Ferrer, S., 2016. Selection of Lactobacillus strains to induce biological acidification in low acidity wines. LWT - Food Science and Technology. 73,334-341.

Maicas, S., Gil, J.V., Pardo, I. & Ferrer, S., 1999. Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Research International. 32,491-496.

Martínez-Lapuente, L., Guadalupe, Z., Ayestarán, B. & Pérez-Magariño, S., 2015. Role of major wine constituents in the foam properties of white and rosé sparkling wines. Food Chemistry. 174,330-338.

Masschelein, C.A., Ryder, D.S. & Simon,J.P., 1994. Immobilized cell technology in beer production. Critical Reviews in Biotechnology. 14, 155–177.

Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P. & Jiranek, V., 2004. Lactic Acid Bacteria as a Potential Source of Enzymes for Use in Vinification. Apply and Environmental Microbiology. 70,5715-5731.

Mattivi, F., Zulian, C., Nicolini, G. & Valenti, L., 2002. Wine, Biodiversity, Technology, and Antioxidants. Annals of the New York Academy of Sciences. 957,37-56.

Maturano, Y.P., Rodríguez Assaf, L.A., Toro, M.E., Nally, M.C., Vallejo, M., Castellanos de Figueroa, L.I., Combina, M. & Vazquez, F., 2012. Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation. International Journal of Food Microbiology. 155,43-50.

Maugenet, J., 1973. Evaluation of the by-products of wine distilleries. II. Possibility of recovery of proteins in the vinasse of wine distilleries. C. R. Seances Acad. Agric. Fr. 59, 481–487.

Mazzoli, R., Lamberti, C., Coisson, J., Purrotti, M., Arlorio, M., Giuffrida, M., Giunta, C. & Pessione, E., 2008. Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. Amino Acids. 36(1):81-9.

Medina, K., Boido, E., Dellacassa, E. & Carrau, F., 2012. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. International Journal of Food Microbiology. 157,245-250.

Mehlomakulu, N.N., Setati, M.E. & Divol, B., 2014. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. International Journal of Food Microbiology. 188, 83-91.

Mendoza, L., Merín, M., Morata, V. & Farías, M., 2011. Characterization of wines produced by mixed culture of autochthonous yeasts and Oenococcus oeni from the northwest region of Argentina. Journal of Industrial Microbiology and Biotechnology.1-9.

Mendoza, L.M., Manca de Nadra, M.C. & Farías, M.E., 2010. Antagonistic interaction between yeasts and lactic acid bacteria of oenological relevance: Partial characterization of inhibitory compounds produced by yeasts. Food Research International. 43,1990-1998.

Mohedano, M.L., López, P., Spano, G. & Russo, P., 2015. Controlling the formation of biogenic amines in fermented foods A2 - Holzapfel, Wilhelm. Advances in Fermented Foods and Beverages, Woodhead Publishing: 273-310.

Moldes, A.B., Torrado, A.M., Barral, M.T. & Domínguez, J.M., 2007. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. Journal of Agriculture and Food Chemistry. 55, 4481–4486.

Moldes, A.B., Vázquez, M., Domínguez, J.M., Díaz-Fierros, F. & Barral, M.T., 2008. Negative effect of discharging vinification lees on soils. Bioresource Technology. 99, 5991-5996.

Mulero, J., Zafrilla, P., Cayuela, J.M., Martínez-Cachá, A. & Pardo, F., 2011. Antioxidant Activity and Phenolic Compounds in Organic Red Wine Using Different Winemaking Techniques. Journal of Food Science. 76, 436-440.

Nedovic, V.A., Durieux, A. & Van Nederveide, L., 2000. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme and Microbial Technology. 26: 834–839.

Nitayavardhana, S., Issarapayup, K., Pavasant, P. & Khanal, S.K., 2013. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresource Technology. 133,301-306.

Nitayavardhana, S. & Khanal, S.K., 2010. Innovative biorefinery concept for sugarbased ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresourses Technology. 101 (23), 9078–9085.

Onetto, C.A. & Bordeu, E., 2015. Pre-alcoholic fermentation acidification of red grape must using Lactobacillus plantarum. Antonie Van Leeuwenhoek. 108,1469-1475.

Oro, L., Ciani, M. & Comitini, F., 2014. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. Journal of Applied Microbiology. 116,1209-1217.

Pérez-Bibbins, B., Torrado-Agrasar, A., Salgado, J.M., Oliveira, R.P.d.S. & Domínguez, J.M., 2015. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview. Waste Management. 40,72-81.

Pérez-Magariño, S., Ortega-Heras, M., Bueno-Herrera, M., Martínez-Lapuente, L., Guadalupe, Z. & Ayestarán, B., 2015. Grape variety, aging on lees and aging in bottle after disgorging influence on volatile composition and foamability of sparkling wines. LWT - Food Science and Technology. 61,47-55.

Portilla, O., Torrado, A.M., Domínguez, J.M. & Moldes, A.B., 2010. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus. Journal of Agriculture and. Food Chemistry. 58 (18), 10162–10168.

Pozo-Bayón, M.A., Martín-Álvarez, P.J., Moreno-Arribas, M.V., Andujar-Ortiz, I. & Pueyo, E., 2010. Impact of using Trepat and Monastrell red grape varieties on the volatile and nitrogen composition during the manufacture of rosé Cava sparkling wines. LWT - Food Science and Technology. 43,1526-1532.

Pozo-Bayón, M.A., Polo, M.C., Martı́n-Álvarez, P.J. & Pueyo, E., 2004. Effect of vineyard yield on the composition of sparkling wines produced from the grape cultivar Parellada. Food Chemistry. 86,413-419.

Provost, C. & Pedneault, K., 2016. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Scientia Horticulturae. 208,43-56.

Quintela, S., Villarán, M.C., De Armentia, I.L. & Elejalde, E., 2012. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan. Food Additives & Contaminants: Part A. 29,1168-1174.

Reddy, L.V., Reddy, Y.H.K., Reddy, L.P.A. & Reddy, O.V.S., 2008. Wine production by novel yeast biocatalyst prepared by immobilization on watermelon (Citrullus vulgaris) rind pieces and characterization of volatile compounds. Process Biochemistry. 43,748-752.

Rivas, B., Torrado, A., Moldes, A.B. & Dominguez, J.M., 2006. Tartaric Acid Recovery from Distilled Lees and Use of the Residual Solid as an Economic Nutrient for Lactobacillus. J Agric Food Chem. 54,7904-7911.

Rodriguez-Nogales, J.M., Fernández-Fernández, E., Gómez, M. & Vila-Crespo, J., 2012. Antioxidant Properties of Sparkling Wines Produced with β-Glucanases and Commercial Yeast Preparations. Journal of Food Science. 77,C1005-C1010.

Rodríguez-Nogales, J.M., Vila-Crespo, J. & Fernández-Fernández, E., 2012. Immobilization of Oenococcus oeni in lentikats® to develop malolactic fermentation in wines. Biotechnology Progress. 29, 60–65.

Rodríguez, M.E., Lopes, C.A., Barbagelata, R.J., Barda, N.B. & Caballero, A.C., 2010. Influence of Candida pulcherrima Patagonian strain on alcoholic fermentation behaviour and wine aroma. International Journal of Food Microbiology. 138,19-25.

Romano, P., Suzzi, G., Domizio, P. & Fatichenti, F., 1997. Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Antonie Van Leeuwenhoek. 71,239-242.

Ruiz, P., Izquierdo, P.M., Seseña, S. & Palop, M.L., 2010. Selection of autochthonous Oenococcus oeni strains according to their oenological properties and vinification results. International Journal of Food Microbiology. 137,230-235.

Russo, P., Capozzi, V., Spano, G., Corbo, M.R., Sinigaglia, M. & Bevilacqua, A., 2016. Metabolites of Microbial Origin with an Impact on Health: Ochratoxin A and Biogenic Amines. Frontiers in Microbiology. 7,482-486.

Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., Steyer, D., Gallardo-Chacón, J.-J., Ballester, J., Vichi, S., Guérin-Schneider, R., Caixach, J. & Alexandre, H., 2012. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology. 32,243-253.

Salgado, J.M., Rodríguez, N., Cortés, S. & Domínguez, J.M., 2010. Improving downstream processes to recover tartaric acid, tartrate and nutrients from vinasses and formulation of inexpensive fermentative broths for xylitol production. Journal of the Science of Food and Agriculture. 90,2168-2177.

Salvetti, E., Orrù, L., Capozzi, V., Martina, A., Lamontanara, A., Keller, D., Cash, H., Felis, G.E., Cattivelli, L., Torriani, S. and Spano, G. 2016. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Applied Microbiology and Biotechnology. 100, 4595-605.

Santos, A., Navascués, E., Bravo, E. & Marquina, D., 2011. Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. International Journal of Food Microbiology. 145,147-154.

Santos, M., Diánez, F., de Cara, M. & Tello, J.C., 2008. Possibilities of the use of vinasses in the control of fungi phytopathogens. Bioresource Technology. 99,9040-9043.

Servetas, I., Berbegal, C., Camacho, N., Bekatorou, A., Ferrer, S., Nigam, P., Drouza, C. & Koutinas, A.A., 2013. Saccharomyces cerevisiae and Oenococcus oeni immobilized in different layers of a cellulose/starch gel composite for simultaneous alcoholic and malolactic wine fermentations. Process Biochemistry. 48,1279-1284.

Silva, C.F., Arcuri, S.L., Campos, C.R., Vileda, D.M., Alves, J.G.L.F. & Schwan, R.F., 2011. Using the residue of spirit production a and bioethanol for protein production by yeast. Waste Manage. 31 (1), 108–114.

Smit, A.Y., Engelbrecht, L. & du Toit, M., 2012. Managing Your Wine Fermentation to Reduce the Risk of Biogenic Amine Formation. Frontiers in Microbiology. 3,76.

Soleas, G.J., Grass, L., Josephy, P.D., Goldberg, D.M. & Diamandis, E.P., 2002. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clinical Biochemistry. 35,119-124.

Spano, G., Rinaldi, A., Ugliano, M., Moio, L., Beneduce, L. & Massa, S., 2005. A b-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. Journal of Applied Microbiology. 98,855-861.

Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton, M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Ladero, V., Alvarez, M., Fernandez, M., Lopez, P., de Palencia, P.F., Corbi, A., Trip, H. & Lolkema, J.S., 2010. Biogenic amines in fermented foods. European Journal of Clinical Nutrition. 64, S95-S100.

Steensels, J., Daenen, L., Malcorps, P., Derdelinckx, G., Verachtert, H. & Verstrepen, K.J., 2015. Brettanomyces yeasts — From spoilage organisms to valuable contributors to industrial fermentations. International Journal of Food Microbiology. 206, 24-38.

Sun, S.Y., Gong, H.S., Jiang, X.M. & Zhao, Y.P., 2014. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiology. 44,15-23.

Suzzi, G., Arfelli, G., Schirone, M., Corsetti, A., Perpetuini, G. & Tofalo, R., 2012. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d'Abruzzo red wine quality. Food Research International. 46,22-29.

Todd, B.E.N., Fleet, G.H. & Henschke, P.A., 2000. Promotion of Autolysis Through the Interaction of Killer and Sensitive Yeasts: Potential Application in Sparkling Wine Production. American Journal of Enology and Viticulture. 51,65-72.

Tominaga, T., Kawaguchi, K., Kanesaka, M., Kawaguchi, H., Sirillo, E. & Kamazawa, Y., 2010. Supression of type-I-allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Inmunopharmacology and Inmunotoxicology. 32 (4), 593–599.

Torrens, J., Urpí, P., Riu-Aumatell, M., Vichi, S., López-Tamames, E. & Buxaderas, S., 2008. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. International Journal of Food Microbiology. 124,48-57.

Tristezza, M., di Feo, L., Tufariello, M., Grieco, F., Capozzi, V., Spano, G. & Mita, G., 2016a. Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWT - Food Science and Technology. 66,406-412.

Tristezza, M., Tufariello, M., Capozzi, V., Spano, G., Mita, G. & Grieco, F., 2016b. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Frontiers in Microbiology. 7,670.

Tristezza, M., Vetrano, C., Bleve, G., Grieco, F., Tufariello, M., Quarta, A., Mita, G., Spano, G. & Grieco F., 2012. Autochthonous fermentation starters for the industrial production of Negroamaro wines. Journal of Industrial Microbiology and Biotechnology 39(1):81-92.

Tristezza, M., Vetrano, C., Bleve, G., Spano, G., Capozzi, V., Logrieco, A., Mita, G. & Grieco, F., 2013. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiology. 36,335-342.

Tsakiris, A., Bekatorou, A., Psarianos, C., Koutinas, A.A., Marchant, R. & Banat, I.M., 2004. Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chemistry. 87,11-15.

Tufariello, M., Chiriatti, M.A., Grieco, F., Perrotta, C., Capone, S., Rampino, P., Tristezza, M. & Mita, G., 2014. Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT - Food Science and Technology. 58,35-48.

Vaquero, I., Marcobal, A. & Munoz, R., 2004. Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology. 96,199-204.

Varga, J., Péteri, Z., Tábori, K., Téren, J. & Vágvölgyi, C., 2005. Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. International Journal of Food Microbiology. 99,321-328.

Velázquez, R., Zamora, E., Álvarez, M., Álvarez, M.L. & Ramírez, M., 2016. Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine. Food Microbiology. 59,150-160.

Versari, A., Parpinello, G.P. & Cattaneo, M., 1999. Leuconostoc oenos and malolactic fermentation in wine: a review. Journal of Industrial Microbiology and Biotechnology. 23,447-455.

Villalba, M.L., Susana Sáez, J., del Monaco, S., Lopes, C.A. & Sangorrín, M.P., 2016. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. International Journal of Food Microbiology. 217,94-100.

Yokotsuka K, Yajima M & Matsudo T., 1997. Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. American Journal of Enology and Viticulture. 48, 471– 81.

Wibowo, D., Fleet, G.H., Lee, T.H. & Eschenbruch, R.E., 1988. Factors affecting the induction of malolactic fermentation in red wines with Leuconostoc oenos. Journal Applied Bacteriology. 64,421-428.

Zapparoli, E., Tosi, E., Azzolini, M., Vagnoli, P. & Krieger, S., 2009. Bacterial inoculation strategies for the achievement of malolactic fermentation in high alcohol wines. South African Journal for Enology and Viticulture. 30,49-55.

DOI: http://dx.doi.org/10.21548/38-2-1333


  • There are currently no refbacks.